Prof. dr hab.Mariusz Jaskólski

Pracownik samodzielny

Fot. Łukasz Gdak

    Website

    Bio:

    • 1976 MSc, chemistry, A. Mickiewicz Univ. (cum laude)
    • 1979 PhD, chemistry, A. Mickiewicz Univ. (cum laude)
    • 1985 DSc, physical chemistry, A. Mickiewicz Univ. (cum laude)
    • 1997 Full Professor, Faculty of Chemistry, A. Mickiewicz Univ.
    • 2002 elected corresponding member, Polish Academy of Sciences
    • 2004 elected member, European Molecular Biology Organization (EMBO)
    • 2005 elected foreign member, Regia Societas Scientiarum Upsaliensis (Sweden)
    • 2016 elected ordinary member, Polish Academy of Sciences

    Functions:

      Cochair, Nucleic Acid Valence Geometry Working Group

Research interests and achievements

Application of crystallography in structural chemistry and structural biology.

  • Amyloidogenic proteins. Discovery of 3D domain swapping in an amyloidogenic protein.
  • Retroviral enzymes. Discovery of the structure of retroviral protease and integrase (collaboration with NCI, USA). Determination of the crystal structure of retroviral protease in monomeric form in an experiment that involved crowd sourcing.
  • Antileukemic asparaginases. Discovery of the structure of the antileukemic drug, E. coli L-asparaginase (collaboration with NCI, USA). Discovery of the structure of a new Class (3) of L-asparaginases.
  • Ntn-hydrolases. Structural characterization and elucidation of the mechanism of plant L-asparaginases/isoaspartyl aminopeptidases. Elucidation of the potassium-dependence mechanism of plant asparaginases.
  • Hydrolase inhibitors and complexes. High-resolution crystal structures of such inhibitors as BPTI, sunflower protease inhibitor, silk protease inhibitor, cystatin C or chagasin, also in complex with target enzymes.
  • Pathogenesis-related proteins. Structural characterization of plant pathogenesis-related proteins.
  • Hormone binding proteins. Discovery of phytohormone binding modes of plant proteins.
  • Macromolecular structures at ultimate resolution. Determination of protein crystal structures at subatomic resolution and of Z-DNA structure at 0.55 Å resolution.
  • Modulated macromolecular structures. Structure determination of modulated protein crystal structures with 28 and 36 protein molecules in the asymmetric supercell.
  • Structural chemistry of nucleic acids and their constituents. Structural chemistry of nucleoside salts. Structure of a nuclear receptor in complex with DNA. Structure of exotic forms of DNA and RNA. Conformation-Dependent Library and server of stereochemical restraints for nucleic acids.
  • Hydrogen bonding in solids. Structural characterization of very short H-bonds. Structural correlations in H-bonded systems.
  • Structural biology and structural chemistry of proteins and nucleic acids in health and disease
  • Antileukemic asparaginases
  • Plant structural biology
  • Crystallographic methodology
  • Topological aspects of crystallography
  • Validation and reproducibility in biomedical research

Website

HIV

  • M.Miller, M.Jaskolski, J.K.Mohana Rao, J.Leis, A.Wlodawer (1989) Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature 337, 576-579.
  • I.T.Weber, M.Miller, M.Jaskolski, J.Leis, A.M.Skalka, A.Wlodawer (1989) Molecular Modeling of the HIV-1 Protease and Its Substrate Binding Site. Science 243, 928-931.
  • A.Wlodawer, M.Miller, M.Jaskolski, B.K.Sathyanarayana, E.Baldwin, I.T.Weber, L.M.Selk, L.Clawson, J.Schneider, S.B.H.Kent (1989) Crystal Structure of a Synthetic HIV-1 Protease Proves Conserved Fold in Retroviral Proteases. Science 245, 616-621.
  • F.Khatib, F.DiMaio, Foldit Contenders Group, Foldit Void Crushers Group, S.Cooper, M.Kazmierczyk, M.Gilski, Sz.Krzywda, H.Zabranska, I.Pichova, J.Thompson, Z.Popovic, M.Jaskolski, D.Baker (2011), Crystal structure of monomeric retroviral protease solved by protein folding game players. Nature Struct. Mol. Biol. 18, 1175-1177.
  • G.Bujacz, M.Jaskolski, J.Alexandratos, A.Wlodawer, G.Merkel, R.A.Katz, A.M.Skalka (1996) The Catalytic Domain of Avian Sarcoma Virus Integrase: Conformation of the Active-site Residues in the Presence of Divalent Cations. Structure 4, 89-96.

Leukemia

  • A.L.Swain, M.Jaskolski, D.Housset, J.K.M.Rao, A.Wlodawer (1993) Crystal Structure of E. coli L-Asparaginase, an Enzyme used in Cancer Therapy. Proc. Natl. Acad. Sci. USA 90, 1474-1478.
  • M.Li, G.Laco, M.Jaskolski, J.Rozycki, J.Alexandratos, A.Wlodawer, A.Gustchina (2005) Crystal structure of HTLV protease: From treating AIDS to fighting cancer. Proc. Natl. Acad. Sci. USA 102, 18332-18337.
  • K.Michalska, A.Hernandez-Santoyo, M.Jaskolski (2008) The mechanism of autocatalytic activation of plant-type L-asparaginases. J. Biol. Chem. 283, 13388-13397.
  • J.I.Loch, B.Imiolczyk, J.Sliwiak, A.Wantuch, M.Bejger, M.Gilski, M.Jaskolski (2021) Crystal structures of the elusive Rhizobium etli L-asparaginase reveal a peculiar active site. Nature Commun. 12, 6717.

Amyloid diseases

  • R.Janowski, M.Kozak, E.Jankowska, Z.Grzonka, A.Grubb, M.Abrahamson, M.Jaskolski (2001) Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nature Struct. Biol. 8, 316-320.
  • M.Wahlbom, X.Wang, V.Lindstrom, E.Carlemalm, M.Jaskolski, A.Grubb (2007) Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J. Biol. Chem. 282, 18318-18326.

Antibiotic resistance

  • J.Raczynska, I.Shabalin, W.Minor, A.Wlodawer, M.Jaskolski (2018) A close look onto structural models and primary ligands of metallo-β-lactamases. Drug Resistance Updates 40, 1-12.
  • J.E.Raczynska, B.Imiolczyk, M.Komorowska, J.Sliwiak, J.Czyrko-Horczak, K.Brzezinski, M.Jaskolski (2020) Flexible loops of New Delhi metallo-β-lactamase modulate its activity towards different substrates. Int. J. Biol. Macromol. 158, 104-115.
  • L.Dabos, J.E.Raczynska, P.Bogaerts, A.Zavala, D.Girlich, R.Bonnin, L.Dortet, A.Peyrat, P.Retailleau, B.Iorga, M.Jaskolski, Y.Glupczynski, T.Naas (2023) Structural and biochemical features of OXA-517: a carbapenem and expanded-spectrum cephalosporin hydrolyzing OXA-48 variant. Antimicrobial Agents and Chemotherapy e0109522.

COVID-19

  • A.Wlodawer, Z.Dauter, I.Shabalin, M. Gilski, D.Brzezinski, M.Kowiel, W.Minor, B.Rupp, M.Jaskolski (2020) Ligand-centered assessment of SARS-CoV-2 drug target models in the Protein Data Bank. FEBS J. 287, 3703-3718.
  • D.Brzezinski, M.Kowiel, D.R.Cooper, M.Cymborowski, M.Grabowski, A.Wlodawer, Z.Dauter, I.G.Shabalin, M.Gilski, B.Rupp, M.Jaskolski, W.Minor (2021) Covid-19.bioreproducibility.org: A web resource for SARS-CoV-2-related structural models. Protein Sci. 30, 115-124.
  • M.Grabowski, J.M.Macnar, M.Cymborowski, D.R.Cooper, I.G.Shabalin, M.Gilski, D.Brzezinski, M.Kowiel, Z.Dauter, B.Rupp, A.Wlodawer, M.Jaskolski, W.Minor (2021) Rapid response to emerging biomedical challenges and threats. IUCrJ 8, 395-407.
  • M.Jaskolski, Z.Dauter, I.G.Shabalin, M.Gilski, D.Brzezinski, M.Kowiel, B.Rupp, A.Wlodawer (2021) Crystallographic models of SARS-CoV-2 3CLpro: in-depth assessment of structure quality and validation. IUCrJ 8, 238-256.

Conformation-Dependent restraints for nucleic acids

  • M.Kowiel, D.Brzezinski, M.Jaskolski (2016) Conformation-dependent restraints for polynucleotides: I. clustering of the geometry of the phosphodiester group. Nucleic Acids Res. 44, 8479-8489.
  • M.Gilski, J.Zhao, M.Kowiel, D.Brzezinski, D.H.Turner, M.Jaskolski (2019) Accurate geometrical restraints for Watson-Crick base pairs. Acta Cryst. B75, 235-245.
  • M.Kowiel, D.Brzezinski, M.Gilski, M.Jaskolski (2020) Conformation-dependent restraints for polynucleotides: The sugar moiety. Nucleic Acids Res. 48, 962-973.