RECENZJA ROZPRAWY DOKTORSkiej

mgr Katarzyny Makowskiej pt. „Zmiany właściwości włóknistych krzemianów pod wpływem czynników fizykochemicznych”

1. Wstęp

Przedłożona mi do recenzja rozprawa doktorska Pani mgr Katarzyny Makowskiej pt. „Zmiany właściwości włóknistych krzemianów pod wpływem czynników fizykochemicznych” została zredagowana na 213 stronach. Autorka cytuje 130 pozycji literaturowych w tym 62. stanowią pozycje obcojęzyczne, głównie angielskie. Doktorantka prezentuje też szereg aktualnych ustaw i rozporządzeń w zakresie gospodarki odpadami i wynikających z tego tytułu implikacji w środowisku przyrodniczym. W rozprawie zamieściła, jako własny dorobek naukowy, spis: rysunków i fotografii (204), tabel (25), akronimów, wykaz publikacji (4), artykułów wydanych w materiałach konferencyjnych (6), komunikatów (39) i zgłoszeń patentowych (2).

Rozprawa ta została przedłożona Radzie Wydziału Chemii Uniwersytetu im. Adama Mickiewicza w Poznaniu. W krótkim wstępie rozprawy Autorka wskazuje na wielorakie wykorzystanie włókien azbestowych do produkcji różnych materiałów, szczególnie widoczne w drugiej połowie XX wieku. Doktorantka zwraca uwagę na dotychczasowy sposób unieszczodliwiania odpadów azbestowych, polegający głównie na deponowaniu tego materiału w wydzielonych kwaterach, nieradko na składowiskach odpadów komunalnych. Już we wstępie sygnalizuje cel rozprawy, który polegałby na nowym sposobie unieszczodliwiania tzw. azbestu chrzotyłowego i przekształcaniu go w mineral nie zaliczany do grupy materiałów azbestowych.

W rozdziałach poświęconych przeglądowi literaturowemu Doktorantka szczegółowo omawia rodzaje mineralów azbestowych, zaliczanych do grupy serpentynitu i amfiboli (tabl. 1). Ich struktury mineralogiczne prezentuje w postaci schematów oraz fotografii mikroskopowych i makroskopowych. Równolegle z tymi prezentacjami zamieszczona szczegółowe opisy fizyczne i chemiczne poszczególnych odmian azbestu. Duże uwagi
poświęca właściwościom włókien azbestowych w tym: wysokiej odporności termicznej, mechanicznej i chemicznej. Doktorantka zwraca uwagę na pewne zalety tych mineralów takie jak łatwość tworzenia kompozytów z innymi materiałami, przykładowo szeroko stosowanymi w budownictwie (np. płyty azbesto-cementowe). Wymienia też inną, pozytywną cechę azbestu jaką jest jego wysoki opór elektryczny, właściwości termoizolacyjne, sorpcyjne oraz możliwości przedzienia włókien. Znamienny jest fakt przemysłowego wykorzystania azbestu. Doktorantka, uwzględniając bogate doniesienia literaturowe, omawia dotychczasowe wykorzystanie tych mineralów w przemyśle (3000 różnych technologii) w tym w budownictwie, transportie, energetyce i przemyśle chemicznym. Wobec liczności zastosowań azbestu, nawiązuje do negatywnego oddziaływania azbestu na zdrowie człowieka, jako wynik przenikania tego mineralu do organizmu poprzez wdychanie zawieszonych w powietrzu włókien azbestowych i w niewielkim stopniu przez skórę i drogą pokarmową. Z prezentowanego przeglądu literaturowego wynika, że niektóre minerały z grupy azbestu a szczególnie azbest chryzotylowy rozpuszczają się lepiej w płucach niż amfibole. Po drugie Doktorantka zwraca uwagę na szereg innych, mało znanych, właściwości toksycznego działania azbestu w tym:

- działanie na układ immunologiczny,
- ingerencję do płuc niektórych metali ciężkich zawartych w azbeście, (może przesada, że do nich zalicza "kancerogenne" żelazo ?),
- metale chemicznie związane w azbeście (tutaj negatywnie pisze o Mg i Fe a też Na ?),
- hamowanie aktywności niektórych enzymów,
- adsorpcję i przenoszenie substancji organicznych do organizmu,
- włóknienie płuc.

Recenzent prosi o wyjaśnienie, negatywnego wpływu ww. wymienionych metali na zdrowie człowieka. Tym niemniej recenzent zgadza się, że szereg informacji dot. ryzyka wystąpienia raka płuc można zaliczyć do działań na rzecz profilaktyki. Dużo uwagi Doktorantka poświęciła regulacjom prawnym w Polsce i na świecie dotyczącym azbestu (rozdz. 4). Na szczególną uwagę zasługują tu syntetyczne informacje dotyczące demontażu wyrobów budowlanych zawierających azbest, traktowanych przez polskie prawodawstwo jako stwarzające szczególne zagrożenie bezpieczeństwa i zdrowia ludzi. Odpady te Doktorantka opisała kodem klasyfikacyjnym i zestawiła w tabeli 2. Informacje te poszerzyła również o sposoby oznakowania wyrobów, odpadów i opakowań zawierających azbest. W rozdziale 5. Doktorantka skupiła się nad problematyką unieszkodliwiania odpadów
azbestowych. Jak wynika z załączonej mapki (rys.16) na terenie Polski, a szczególnie we wschodniej części kraju, występuje największe nagromadzenie wyrobów azbestocementowych (0,45 - 1,00 kg/osobę). Zgodnie z Programem Oczyszczania Kraju z Azbestu do 2032 roku odpady te winny zostać usunięte. W związku z tym planowana jest budowa nowych składowisk odpadów (56) lub kwarter na istniejących obiektach. Rozważane są też inne niż ww. metody unieszkodliwiania odpadów azbestowych takie jak: termiczna, mechanoochemiczna, topienia w piecu łukowo-oporowym, promieniowanie mikrofalowe, topienie z topnikami, witryfikacji oraz chemiczne, głównie z wykorzystaniem kwasów mineralnych i organicznych a też biologiczne polegające na wykorzystaniu mikroorganizmów glebowych. Metody te zostały wysoce precyzyjnie opisane przez Doktorantkę wraz z ich wadami i zaletami.

Szereg praktycznych informacji zawartych w tej części pracy posiada charakter wybitnie aplikacyjny i może być przydatny pracownikom administracji państwowej, jak też pracownikom firm zajmujących się demontażem obiektów zawierających odpady azbestowe.

2. Metodyka badawcza

Doktorantka w badaniach azbestu chryzotylowego oraz produktów jego przemian wykorzystała najnowsze metody analityczne w tym: mikroskopię polaryzacjną (PLM), mikroskopię optyczną z kontrastem fazowym (PCOM, zalecaną przez Polską Normą PN-88Z-04202/02. (norma ta odnosi się jedynie do oznaczeń azbestu w powietrzu). W tym przypadku korzystała z norm amerykańskich (Method NIOSH 7400 oraz Method OSHA-ID-160), które pozwalają na prowadzenie badań tego materiału w środowisku wodno-gruntuowym. Korzystała również z zaleceń zawartych w zmodyfikowanej metodzie, przedstawionej w dokumencie EPA-600/4-83-043, opracowanej z myślą o analizie azbestu w tych matrycach. Prowadziła badania z użyciem scanningowej mikroskopii elektronowej (SEM), korzystając ze spektrometru EDX (dyspersyjna spektrometria rentgenowska), dającą możliwość dużych powiększeń nawet do 100000 x oraz transmisyjnej mikroskopii elektronowej (TEM). Stosowała również inne metody instrumentalne w tym: spektroskopię w podczerwieni z transformacją Fouriera (FT-IR), dyfrakcyjne promieniowanie rentgenowskie (XRD), analizę termogravimetryczną (TGA) i różnicową analizę termiczną (DTA). W celu sprawdzenia składu włókien azbestu chryzotylowego korzystała w analizie mikroskopowej z przystawki EDS (spektrometru dyspersji energii wtórnego promieniowania rentgenowskiego). Mając na
uwadze dostęp do unikalnej aparatury badawczej mogła świadomie realizować ambitne cele i zakres prac badawczych.

3. Merytoryczna ocena rozprawy doktorskiej

Podjęte badania Doktorantki polegały na unieszkodliwianiu azbestu chryzotylowego, poprzez ekstrakcję magnezu z zewnętrznej warstwy włókna azbestowego (brucyu). Wykorzystała do tego celu popularne, łatwo dostępne i niezbyt kosztowne kwasy: siarkowy VI, azotowy V, fosforowy V, solny oraz octowy, które jako ekstraktory usuwały (wymywały) magnez z minerału azbestowego, nie powodując destrukcji jego włóknistej struktury. Zawartość magnezu w eluatach oznaczała metodą optycznej spektrometrii emisyjnej ze wzbudzeniem w plazmie indukowanej ICP-OES. Zawartość magnezu porównywała przed i po zabiegu ekstrakcji tego pierwiastka ze struktury azbestu chryzotylowego. Całość procedury badawczej została precyzyjnie opisana a nawet sposób obliczenia tego procesu, który mógłby zostać pominięty bez utraty rangi naukowej tej dysertacji. Wykonując te badania w przypadku wymienionych wcześniej kwasów, stosowała różne objętości nadmiarowe (przykładowo 5-krotne dla kwasu siarkowego oraz 10-krotne dla kwasu octowego). W rozdziale 10, poświęconym wynikom badań i ich analizie, zamieściła zdjęcia mikroskopowe z obserwacji ewentualnej destrukcji włókien azbestowych. Jakość tych zdjęć nie jest najlepsza i może Doktorantka wyjaśnić tę przyczynę. Jednocześnie zauważa się ile wysiłku w badania te włożyła Doktorantka aby obserwować je w mikroskopie optycznym z kontrastem fazowym w czasie od 6 až do 2400 godzin, w kontakcie z kwasem siarkowym o stężeniu 25%. W podsumowaniu tych badań stwierdza, że widoczne są włókna azbestowe a tym samym azbest nadal posiada strukturę włóknistą. Podobne badania wykonała dla pozostałych kwasów, uzyskując te same efekty. Kolejny etap badań dotyczył wpływu poszczególnych kwasów na efekt wymywania magnezu ze struktury azbestu chryzotylowego. Badania te prowadziła z wykorzystaniem optycznej spektrometrii emisyjnej ze wzbudzeniem w plazmie indukowanej ICP-OES. Wyniki tych badań Autorka zestawiła w tabelach oraz zilustrowała na poglądowych wykresach. Z przebiegu poszczególnych krzywych wynika, że magnez zawarty w azbeście w roztworze kwasu siarkowego był wymywany głównie przez pierwsze 96 godzin w temperaturze 25°C. Niewielkie różnice w badaniach prowadzonych na 3 próbkach wynikają z procesów zachodzących w temperaturze wyższej o 5°C. Możliwe, że w wyższej temperaturze wymywaniu ulegałyby więcej magnezu. Dla pozostałych kwasów "punkty
godzinom, jak również ubytek masy próbki w trzech dalszych badaniach. Kolejną serię identycznych badań wykonano dla 25% roztworu kwasu siarkowego. Nie stwierdzono istotnych różnic w stosunku do roztworów 10, 15 i 25%. Dalszy ciąg badań doktorantki prowadziła w zmiennych warunkach temperaturowych tzn. w temperaturze 40 i 50°C, przy zachowaniu 10, 15 i 25% roztworu kwasu siarkowego. W każdym z analizowanych przypadeków stwierdzono strukturę włóknistą próbek azbestu, przy jednoczesnym ubytku masy badanych próbek. Wzrost ilości wymywanego magnezu (do 90%) obserwowano głównie po pierwszych 6 godzinach trwania procesu unieszkodliwiania. Wzrost temperatury nie wpływał znacząco na ten proces. Analizowane tu poszczególne elementy rozprawy doktorskiej mogą być aplikowane do praktyki. W znacznym mniejszym stopniu rzutują one na rozwój dyscypliny naukowej.

rozpraszania barw, przy pomocy mikroskopu polaryzacyjnego wyposażonego w specjalny obiektów DSO. Wówczas włókna ustawione prostopadle do polaryzatora mają barwę niebieską. Recenzentowi wydaje się, że nastąpiło przekłamanie tekstu (str 176 wiersze 6-7). Natomiast włókna ustawione równolegle w stosunku do polaryzatora mają barwę fioletową (proszę o sprawdzenie tego zapisu). Na kolejnych bardzo przejrzystych fotografiach (rys. 178 - 191) zamieszczono wyniki badań, które ilustrują produkty otrzymane po 96 i 2400 godzinach inkubacji włókien chryzotylowych z różnymi kwasami. Całość tych fotografii zamieszczono w załączniku nr 2. Wykonano również badania porównawcze azbestu chryzotylowego z produktem bezazbestowym, otrzymywanym w reakcji unieszkodliwiania chryzotylu z 5-krotnym nadmiarem 25% kwasu siarkowego (VI), prowadzone w temperaturze 25°C. Do takich Doktorantka zalicza zmianę barwy produktu w stosunku do substratu, niszczenie struktury włóknistej chryzotyłu (obserwacje przy pomocy scanningowego mikroskopu elektronowego), polegające na zjawisku występowania struktury włóknistej obok struktury pierwotnej. W celu sprawdzenia składu włókien azbestu chryzotylowego korzystała w analizie mikroskopowej z przystawki EDS (spektrometru dyspersji energii wtórnego promieniowania rentgenowskiego). Potwierdziły ona skład pierwiastkowy substratu i produktu (rys. 196). Kolejne przybliżenie w badaniach obu grup materiałów stanowią badania zawartości wapnia, magnezu i żelaza przy zastosowaniu techniki ICP-OES. Badano również ciężar nasypowy i gęstość objętościową obu produktów. Okazało się, że ciężar nasypowy i gęstość objętościowa azbestu chryzotylowego jest około 2-krotnie wyższa od bezazbestowego. Jednocześnie stwierdzono, że materiał bezazbestowy posiada dwukrotnie większą powierzchnię właściwą od azbestowego, tym samym wyższą zdolność sorpcyjną. Aby definitwnie ocenić zdolności sorpcyjne jednego lub drugiego materiału należałoby wykonać stosowne badania. Możliwości aplikacyjne azbestu, jak również produktu pozbawionego magnezu można ocenić w wyniku wykonania analizy termogravimetrycznej. Na tej podstawie Doktorantka wykazała, że struktura krystaliczna azbestu chryzotylowego jest stabilna do 600°C, natomiast materiału bezazbestowego do 900°C co poszerza możliwości aplikacyjne produktu w stosunku do substratu. Jak wynika z badań prowadzonych przez Doktorantkę azbest chryzotylowy jest odporny na działanie silnych kwasów aczolwiek do roztworu przechodzi wówczas, w wyniku zewnętrznej warstwy brucytu, głównie związki magnezu i żelaza a też powstaje nierozpuszczalna w wodzie i kwasach włóknista krzemionka. Doktorantka postanowiła sprawdzić zachowanie się tego minerału w środowisku zasadowym w roztworze amoniku. Z badań wykonanych metoda mikroskopii SEM wynika, że azbest
chryzotylowy zachowuje nadal strukturę włóknistą, przy czym ulegają one nieznacznemu rozwłóknieniu.

4. Podsumowanie

Recenzowana rozprawa doktorska posiada szereg aspektów naukowych i aplikacyjnych z przewagą tych drugich. Oto one:

- Prowadzone badania mogą służyć do identyfikacji minerałów o charakterze azbestów.
- Brak dowolnej pojedynczej cechy tego minerału wyklucza materiał jako azbest chryzotylowy. Równocześnie brak magnezu w we włóknach azbestu nie pozwala na kwalifikacje tego minerału do grupy azbestu chryzotylowego.
- Do produkcji azbestu chryzotylowego można wykorzystać stosunkowo tani kwas siarkowy (VI).
- Wykorzystanie unikalnych metod badań strukturalnych azbestu, w tym mikroskopii polaryzacyjnej, umożliwia szybką identyfikację tego minerału.
- Istnieją potencjalne możliwości wykorzystania nowego materiału bezazbestowego w różnych dziedzinach, w tym w inżynierii środowiska jako potencjalnego sorbentu.
- Szereg właściwości nowego materiału w stosunku do azbestu chryzotylowego pozwala na szerokie stosowanie tego minerału.

Recenzent w stosunku do ocenianej rozprawy doktorskiej formułuje kilka uwag krytycznych. Oto one:

- Zbyt pobieżne wyjaśnione zostały mechanizmy reakcji azbestu chryzotylowego z poszczególnymi kwasami.
- Niektóre fotografie są słabo czytelne.
- Doktorantka mogła pokusić się choćby o wprowadzenie podstawowych elementów analizy statystycznej co znacznie wzbogaciłoby rozprawę.
- Pozostałe uwagi zostały uwypuklone w tekście recenzji.
5. Wniosek końcowy

Powyższe uwagi nie pomniejszają merytorycznej wartości rozprawy doktorskiej Pani mgr Katarzyny Makowskiej. Mogą być również pomocne w dalszych poszukiwaniach problematyki badawczej a tym samym służyć dalszemu rozwojowi naukowemu Doktorantki. Praca ta wnosi szereg aspektów naukowych i aplikacyjnych, głównie w zakresie metody unieszkodliwiania kancerogennego azbestu chryzotylowego. Walory aplikacyjne rozprawy przewijają się w całej pracy. W pracy tej poruszono również możliwości zastąpienia tego minerału nowym materiałem nie będącym azbestem i wykorzystywaniu go w wielu dziedzinach techniki. Doktorantka w recenzowanej rozprawie wskazała na możliwości wykorzystania unikalnych metod do badań strukturalnych azbestu i nowego unieszkodliwianego produktu, w tym mikroskopii polaryzacyjnej, która pozwala na szybką identyfikację tego minerału.

Praca ta spełnia wymogi Rozporządzenia Ministra Nauki i Szkolnictwa Wyższego z dnia 22 września 2011 roku w sprawie szczegółowego trybu i warunków przeprowadzania czynności w przewodach doktorskich, w postępowaniu habilitacyjnym oraz w postępowaniu o nadanie tytułu profesora (Dz. U. Nr 204, poz.1200). Wobec powyższego wnoszę do Wysokiej Rady Wydziału Chemii Uniwersytetu im. Adama Mickiewicza w Poznaniu o dopuszczenie rozprawy Pani mgr Katarzyny Makowskiej do publicznej obrony.

[Podpisanie]