RECENZJA

pracy doktorskiej mgr Krystiana Pyty

pt.: „Synteza i struktura nowych aminowych analogów
ansamycynowego antybiotyku rifampicyny”


Omagiana dysertacja umiejscowiona jest mocno w temacie prowadzonej w Zakładzie Biochemii i wchodzi w istotny obszar chemii leków, bowiem dotyczy badań nad poszukiwaniem nowych, potencjalnych związków chemicznych, które wykazują aktywność biologiczną. Rifampicina jest antybiotikiem ansamycynowym o szerokim spektrum działania, stosowanym w leczeniu zakażeń wrażliwymi drobnoustrojami, w tym: prątkiem gruźlicy i prątkiem trądu. Ponadto zatrzymuje proces rozwoju i wzrostu bakterii Gram-dodatnich i Gram-ujemnych w warunkach in vitro. Tworząc kompleks z polimerazą DNA, rifampicina blokuje jej aktywność bakteryjną. Główną inspiracją do tematu był problem uodontania się bakterii w szczególnych warunkach na działanie tego antybiotyku, poprzez hydrołizę wiązania hydrazoniczowego, co w konsekwencji prowadzi do lekooporności.

Autor wyznaczył sobie za cel otrzymanie nowych aminowych analogów rifampicyny, które zawierałyby w swoich strukturach grupy alkiowe, hydroksyalkilowe, aromatyczne oraz heteroaromatyczne. W szczególności, połączenie podstawnika przy atomie węgla C(3) miało spowodować większą odporność na jego hydrolyzę powodowaną przez bakterie. W dalszych etapach pracy postanowił ustalić aminowe struktury analogów rifampicyny w różnych rozpuszczalnikach oraz wykonać badania ich aktywności przeciwbakteryjnej. Tym samym
miał to na celu ustalenie zależności elementu strukturalnego, który decyduje o aktywności przeciwbakterialnej nowo otrzymanych analogów.

W ocenianej dysertacji, liczącej 163 strony (plus Załączniki) mgr Krystian Pyta w sposób systematyczny przedstawił tok działania i wyniki prowadzonych przez siebie badań. Rozprawa doktorska jest podzielona na klasyczne rozdziały:

- Wykaz stosowanych skrótów i symboli (2 strony);
- cel pracy (2 strony);
- wstęp teoretyczny (58 stron);
- wyniki i dyskusja (75 strony);
- część eksperymentalna (12 stron);
- podsumowanie (2 stron).

Całość pracy zakończona jest spisem literatury. Obejmuje on 248 prac naukowych. Ponadto opracowanie zakończone jest streszczeniem w języku angielskim, a do całości Autor dołączył również 3 załączniki, które są bardzo pomocne w czytaniu pracy, a zawierające między innymi struktury wszystkich 18 analogów rifampicyny, otrzymanych przez Doktoranta.

Cel pracy sformułowany jest bardzo precyzyjnie. Doktorant zrealizował go w 100%, a swoje działania omówił w części poświęconej wynikom i dyskusji.

We wstępie teoretycznym, który tutaj pełni rolę wprowadzenia i informacji na temat historii, ale przede wszystkim aktualnego stanu wiedzy w realizowanym przez Autora temacie, mgr K. Pyta w bardzo logiczny, planowy sposób wprowadza czytelnika w „świat” antybiotyków ansamycynowych. Rifamicyny, związki o silnych właściwościach bakteriobójczych, zostały odkryte i spopularyzowane głównie dzięki pracom badawczym grupy prof. Piero Sensiniego z Mediolanu, który w 1957 roku wyizolował z sosny nadmorskiej bakterie Actinomycete mediterranei, które ostatecznie zostały sklasyfikowane jako nowy rodzaj Amycolatopsis mediterranei. To właśnie te bakterie produkowały nowe, jak na tamte czasy, silnie bakteriobójcze związki, które swoją interesującą nazwę zawdzięczają popularnej kiedyś francuskiej powieści kryminalnej i filmowi „Rififi”. W dalszej części wstępu Autor omawia szczegółowo metody syntezy rifampicyny i jej aminowych pochodnych oraz zwraca uwagę na problemy, z jakimi spotykali się badacze podejmujący ten temat. Opisuje także mechanizm działania rifampicyny, zwracając szczególną uwagę na jej bakteriobójcze działanie. Doktorant sporo miejsca poświęca także zjawisku tautomerii, które niewątpliwie pośrednio ma wpływ na różne konformacje „mostu ansamycynowego”, co z
kolei wpływa na aktywność przeciwbakteryjną. Także proces aminowania redukcyjnego oraz problem doboru odpowiedniego odczynnika redukującego podczas reakcji zajmuje niemało miejsca w opracowaniu teoretycznym sporządzonym przez Doktoranta.

Część teoretyczna, sporządzona na podstawie literatury, stanowi doskonałe wprowadzenie do całej pracy i pokazuje, że Autor dokładnie poznał zagadnienia obejmujące zarówno syntezę, jak i szerokie zastosowanie tej interesującej grupy związków w medycynie. Jest ona sporządzona bardzo rzetelnie. Mgr K. Pyta w sposób wyczerpujący omówił wyniki dotychczasowych badań, wykazując się przy tym bardzo dobrą znajomością literatury. Jednakże mam w tym miejscu zastrzeżenie, raczej natury edytorskiej, jeśli chodzi o formę schematu przedstawiającego strategię całkowitej syntezys mostu ansamycynowego, zaproponowanego przez Autora na podstawie opracowań trzech niezależnych zespołów badawczych (Rys. 2.10, str. 13). W mojej opinii zaproponowany przez Doktoranta schemat jest niezrozumiały i trudno zorientować się w poszczególnych etapach działania każdego z omawianych zespołów.

W rozdziale dotyczącym wyników i dyskusji mgr Krystian Pyta szczegółowo przedstawia warunki syntezsy aminowych analogów rifampicyny. Ogółem otrzymał 18 pochodnych (AR1-AR18) o właściwościach bakteriobójczych, z wydajnością 40-70% (wydajność po chromatografii kolumnowej), które zawierają w swoich strukturach grupy alkilowe, hydroksyalkilowe, aromatyczne oraz heteroaromatyczne. Zakres modyfikacji przeprowadzonych przez Doktoranta ma istotne znaczenie dla kompetentnych sformułowania wniosków dotyczących zależności struktura-aktywność biologiczna antybiotyków z grupy rifamycyn. Pierwszy etap syntezsy aminowych analogów rifampicyny, to otrzymanie 3-formylrifamicyyny SV z rifampicyny. Proces ten, znany dotychczas w literaturze był i długi, i pracochny. Stąd też za jedno z najważniejszych osiągnięć pracy doktorskiej mgr K. Pyty uważam opracowanie nowej, wydajnej metody otrzymywania 3-formylrifamicyyny SV z rifampicyny.

W celu identyfikacji uzyskanych produktów oraz ustaleniu konfiguracji wiązań podwójnych oraz konformacji fragmentu dienowego, wchodzących w skład mostu ansamycynowego aminowych pochodnych rifampicyny, Doktorant posługiwał się analizą spektroskopową z wykorzystaniem wielu dostęnych technik multijądrowego magnetycznego rezonansu jądrowego, także COSY, HSQC, HMBC, NOESY. W pracy zawarte są widma badanych związków oraz tabele wartości przesunięć chemicznych. Zwraca uwagę duża biegłość Autora w interpretacji zamieszczonych widm.
W trakcie wykonywania pracy Doktorant wykorzystywał z powodzeniem także inne techniki badawcze, takie jak np. spektroskopia w podczerwieni (FT-IR), istotne z punktu widzenia identyfikacji otrzymanych związków chemicznych. Obecność szeregu ugrupowań w cząsteczkach zarówno rifampicyny, jak i jej aminowych analogów takich jak: podstawniony pierścień naftalenowy, trzech wiązań podwójnych, w tym jednego ugrupowania dienowego, pięciu grup hydroksylowych w tym trzy fenolowych, grupy amidowej, estrowej, eterowej, ketonowej, ugrupowania acetalowego oraz grupy hydrazonowej z podstawnikiem piperazynowym (dla rifampicyny) oraz drugorzędowej grupy aminowej podstawionej układami alilowym, hydroksy-alkilowym, heteroaromatycznymi a także grupami benzyłowymi z przyłączonymi atomami halogenów (w przypadku analogów) czyni te cząsteczki złożonym przedmiotem analizy spektroskopowej, szczególnie w metodzie w podczerwieni.

Analiza rozpadów masowych rifampicyny i jej analogów została opracowana przy wykorzystaniu techniki MALDI-TOF MS w trybie jonów dodatnich. Schematy rozpadów zostały opracowane na podstawie badań tandemowych, a skład proponowanych jonów został potwierdzony badaniami wysokorozdzielczymi HR-MALDI-TOF. Na podkreślenie zasługuje fakt wykrycia dla tej grupy ansa-makroloidów fragmentacji zarówno typu „charge-mediated”, jak i „charge-remote”, co wpłynęło na wielokierunkowość procesów fragmentacji. Doktorant zaproponował również sygnały charakterystyczne dla rozpadu tej grupy związków, mogące posłużyć do ich analitycznego wykrywania w materiałach biologicznych.

Wykonano również, przy współpracy z Wydziałem Mikrobiologii Uniwersytetu Medycznego w Warszawie, badania aktywności przeciwbakteryjnej nowych aminowych analogów rifampicyny na szczepach bakterii Gram-dodatnich i Gram-ujemnych, podając jako wyznacznik wartość minimalnego stężenia wywołującego inhibicję (MIC) [μg/ml].

W pracy przedstawiono także opracowane struktury krystalograficzne rifampicyny (w formie niejonowej iwitterjonowej) oraz jej analogu posiadającego ugrupowanie alilowe (w formie zwitterjonowej). Dzięki współpracy z zespołem prof. M. Gdaniec z Wydziału Chemii UAM oraz na podstawie danych spektroskopowych i obliczeń semiempyrnych PM5, a także skonfrontowania tych wyników z analizą wyników testów aktywności biologicznej, Autorowi udało się zaproponować nowy model najkorzystniejszych energetycznie oddziaływań pomiędzy grupami wchodzący w skład aminokwasów bakteryjnej polimerazy RNA w miejscu wiążącym pochodne rifamycyny. Dzięki temu wykazano, że zaproponowany przez grupę Darsta (Cell, 104, 2001) model ustalony na podstawie częściowo błędnej struktury krystalograficznej rifampicyny i struktury krystalograficznej bakteryjnej polimerazy
RNA nie jest prawidłowym. Należy podkreślić, że rzeczywista struktura pentahydratu rifampicyny w postaci zwitterjonowej, która powinna być użyta do budowy modelu oddziaływań inhibitor-polimeraza RNA, została określona i opublikowana w Acta Crystallogr, Sect C.


Pragnę także podkreślić, że w trakcie czterech lat studiów doktoranckich, mgr Krystian Pyta dał się poznać jako bardzo uzdolniony, a przede wszystkim pracowity młody naukowiec. Tematyka jego zainteresowań naukowych jest rozległa i obejmuje nie tylko badania wykonane w ramach pracy doktorskiej. Świadczy o tym osiemnaście (18) opublikowanych prac naukowych, w czasopismach o zasięgu międzynarodowym z listy filadelfijskiej i o sumarycznym IF równym 42.302 (na podstawie IF 2010).

Praca badawcza mgr Krystiana Pyty znalazła uznanie Kapituły Fundacji na rzecz Nauki Polskiej, która w 2011 roku przyznała mu prestiżowe stypendium „START dla młodych uczonych”, a także Fundacji UAM, która także uhonorowała jego pracę stypendium w 2011 roku.

Podsumowując, stwierdzam, że rozprawa doktorska Pana mgr Krystiana Pyty spełnia w pełni wymogi ustawy z dnia 14 marca 2003 roku „O stopniach naukowych i tytułach naukowych oraz o stopniach w zakresie sztuki” (Dz. U. nr 65 poz. 595) z późniejszymi zmianami D.U. z 2005 r., nr 164, poz. 1365, D.U. z 2011, nr 84, poz. 455. i wnioskuję do Rady Wydziału Chemii Uniwersytetu im. Adama Mickiewicza w Poznaniu o dopuszczenie Pana mgr K. Pyty do dalszych etapów przewodu doktorskiego. Z uwagi na działalność...
badawcza mgr K. Pyty oraz znaczący dorobek publikacyjny uzyskany w trakcie wykonywania dysertacji, który uzasadniłam powyżej, wnoszę także o wyróżnienie przedstawionej rozprawy doktorskiej.

Jędrzejewicz Wiesława