Recenzja pracy doktorskiej

„Katalizatory złotowo-miedziowe na nośnikach cerowych, cyrkonowych i cerowo-cyrkonowych – preparatyka, charakterystyka i zastosowanie w procesach utleniania”

preststawionej przez Pana mgr Piotra Kamińskiego

wykonanej pod kierunkiem prof. dr hab. Marii Ziółek

w Zakładzie Katalizy Heterogenicznej Wydziału Chemii UAM w Poznaniu

Analiza merytoryczna pracy

Praca doktorska Pana mgr Piotra Kamińskiego dotyczy intensywnie eksplorowanego zagadnienia kontrolowanej syntezę i opisu właściwości katalizatorów adresowanych do procesów utleniania w fazie gazowej i ciekłej na przykładzie reakcji utleniania tlenku węgla(II) oraz selektywnego utleniania alkoholi (metanolu i glicerolu). Reakcja utleniania CO do CO₂ jest jednym z istotniejszych procesów w perspektywie rozwoju technologii ogniw paliwowych. Jest to podytowane faktem, iż CO stanowi niepożądany środowiskowo produkt uboczny procesów pozyskiwania wodoru a więc podstawowego i najbardziej obiegującego paliwa dla ogniw. Reakcja selektywnego utleniania metanolu jest jedną z metod syntezy formaldehydu, trówczanu metylu, czy dimetoksymetanu, tj. związków szeroko wykorzystywanych np. w produkcji żywic, włókien chemicznych, paliw o wysokiej liczbie cetanowej, czy w przemyśle farmaceutycznym. Formaldehyd stanowi też źródło skażenia (powstawanie smogu fotochemicznego, wzrostu stężenia kancerogennych związków w budynkach mieszkalnych oraz środowisku naturalnym) zatem wgląd w proces całkowitego utlenienia tego związku posiada ważny aspekt środowiskowy. Reakcja całkowitego utleniania metanolu jest więc ważną reakcją testową niskotemperaturowego utleniania lotnych związków organicznych (LZO) – związków, których przykładem jest formaldehyd. Prężnie rozwijający się rynek produkcji biodiesla generuje olbrzymie ilości glicerolu jako produktu uboczneego. Proces utleniania glicerolu jest jednym z najbardziej intensywnie badanych kierunków przekształcenia tego związku do cennych związków tlenowych (np. kwasu glicerynowego,
mlekowego lub glikolowego). W świetle rozwijających się współcześnie badań podjęcie tematyki rozprawy doktorskiej jest jak najbardziej uzasadnione, a praca przedstawiona do recenzji jest interesującą propozycją sytuującą się w najnowszych nurtach badawczych. Uważam, że zastosowana metodologia badań jest oryginalna i nowatorska.

Przedstawiona do recenzji rozprawa Pana mgr Piotra Kamińskiego doskonale wpisuje się w nurt tematyki badawczej realizowanej w Zakładzie Katalizy Heterogenicznej Wydziału Chemii UAM w Poznaniu, związanego z badaniami natury centrów metali przejściowych zdispersowanych na powierzchni materiałów tlenkowych. Rozprawa Pana mgr Piotra Kamińskiego stanowi doskonały przykład wykorzystania przez Autora wiedzy oraz osiągnięć Zespołu do oryginalnego i twórczego rozwinięcia własnych pomysłów badawczych. Głównym celem pracy, osiągniętym z powodzeniem, było otrzymywanie katalizatorów mono- i bimetalicznych, które w kontekście natury centrów (miedź, złoto, cyrkon, cer) dedykowane były jako katalizatory reakcji selekcyjnego utleniania alkoholi. Aby zrealizować ten cel Doktorant musiał pokonać kilka etapów żmudnych badań podstawowych, w tym między innymi: opracować i zoptymalizować metody syntez mezoporowatych tlenków cerowo-cyrknonowych, metody nanoszenia tych tlenków na mezoporowatą krzemionkę typu SBA-15, jak i depozycji mono- jak i bimetalicznego układu na tych nośnikach. Właściwości strukturalno-teksturalne określono w badaniach dyfrakcji promieniowania X (XRD), niskotemperaturowej sorpcji azotu, a także przy wykorzystaniu technik mikroskopii elektronowej: transmisyjnej (TEM) i skaningowej (SEM). Skład chemiczny wyznaczono metodą emisyjnej optycznej spektrometrii z indukcyjnie sprzężoną plazmą (ICP-OES) i spektroskopii fotoelektronów wybijanych promieniowaniem X (XPS). Na szczególne podkreślenie zasługuje głęboka analiza specjacji centrów redoksowych, której dokonano wykorzystując przede wszystkim technikę spektroskopii w zakresie nadfioletu i światła widzialnego (UV-vis) oraz spektroskopii w podczerwieni (FTIR). Na szczególną uwagę zasługują pomiary IR wykonane w warunkach reakcji katalizy utleniania CO do CO₂, tj. w modzie operando. Należy podkreślić, że pomiary operando, szczególnie z zastosowaniem spektroskopii IR, są jednymi z najbardziej wymagającymi pod względem eksperymentalnym. Niemniej stanowią one źródło istotnych informacji o formach specyficznych centrów aktywnych, tak kwasowych jak i redoksowych, ale przede wszystkim o naturze zaadsorbowanych reагентów, czasie ich życia oraz ścieżce transformacji jakie ulegają w rzeczywistym czasie reakcji. W badaniach ciał stałych szczególnie wymagającą kwestią jest zastosowanie reagentów jako cząsteczek sond oraz optymalizacja ilościowej procedury doświadczalnej. W tych aspektach głównym ograniczeniem jest reaktywność cząsteczek reagentów - zakres ich przekształceń jest trudny nie tylko do detekcji ale przede wszystkim dla ilościowego opisu. Te zadania szczególnie trudne są do realizacji w warunkach operando. Zatem analiza powierzchni katalizatora, tak pod względem jakościowym jak i ilościowym, przeprowadzona przez Doktoranta w ośrodku badawczym LCS ENSICAEN Uniwersytetu Dolnej Normandii w Caen we Francji, a której wyniki zostały szczegółowo zaprezentowane w pracy [III] są,
w mojej ocenie, jednymi z najbardziej wartościowych. W aspekcie specjacji centrów dopełnienie charakterystyki katalizatora stanowi analiza właściwości kwasowo-zasadowych przeprowadzona w oparciu o wyniki pomiarów in situ FTIR z zastosowaniem sorpcjipirydyny jako sondy. Całość obrazu uzupełniają badania reakcji cykliczacji i odwodnienia 2,5-heksanodionu. Ostateczna weryfikacja przydatności sztucznie zsyntetyzowanych materiałów nastąpiła na drodze testów katalitycznych w reakcji selektywnego utleniania glicerolu i metanolu. Dodatkowo, reakcję utleniania CO wykorzystano jako testową do obserwacji różnic w aktywności katalizatorów mono i bimetalicznych na bazie SBA-15 z tlenkami ceru i/lub cyrkonu oraz do oceny stabilności katalizatorów. Szczegółowa charakterystyka otrzymanych materiałów, przeprowadzona zarówno po syntezie i po testach katalitycznych, dostarczyła cennych informacji o roli nośnika w w. procesach selektywnego utleniania, o zmianach we właściwościach fizykochemicznych powierzchni katalizatora i formach specyficznych centrów aktywnych. Uдовodniono, że przez dobór nie tylko składników fazy aktywnej, ale także nośników zawierających cer i/lub cyrkon można uzyskać katalizatory o pożądanej aktywności i selektywności w badanych reakcjach utleniania. Tak całościowy obraz umożliwił opis sposobu oddziaływania katalizatorów z reagentami a w konsekwencji zaproponowanie ścieżek reakcji utleniania na katalizatorach poszczególnych typów. Należy podkreślić, że omawiane w pracy zagadnienia są istotne dla zrozumienia mechanizmów katalitycznego selektywnego utleniania glicerolu i metanolu a więc w dalszej perspektywie stanowią źródło cennych informacji dotyczących optymalizacji już istniejących katalizatorów czy też projektowaniu nowych.

Analiza formalna pracy

Przedstawiona do oceny praca została przygotowana w postaci spójnego tematycznie zbioru czterech artykułów opatrzonego stosownym komentarzem. Komentarz, na który składa się 66 stron, zawiera wszystkie wymagane rozdziały. Doktorant przedstawił główne tezy swojej pracy, założenia, dyskusję najważniejszych osiągnięć oraz wnioski końcowe. Ta część rozprawy została napisana z należytą starannością i dużą kompetencją, co zostało poparte rozoznaniem Doktoranta w literaturze związanej z tematyką pracy. Autor w eleganci sposób dokonał kompilacji najbardziej wartościowych zagadnień oraz przedstawił zasadność ich wyboru. W efekcie, wobec ogromu doniesień literaturowych, jednoznacznie przedstawiony został powód do podjęcia oryginalnych badań opisanych w dalszej części dotyczącej badań własnych. W tej części rozprawy znalazł swoje miejsce spis publikacji Doktoranta (5 artykułów, z czego 4 są podstawą przygotowania pracy doktorskiej), oświadczenia o jego własnym wkładzie w przeprowadzone badania, spis konferencji naukowych, na których prezentowane były prace Doktoranta (6-krotnie na konferencjach międzynarodowych oraz 6-krotnie na konferencjach krajowych). Ponadto załączona została lista stypendiów naukowych, wyróżnień i nagród, których beneficjentem był Pan Piotr Kamiński a także

Na podstawie listy autorów omawianych publikacji a także oświadczeń przedstawionych przez Doktoranta wnioskować można, że był on w głównym autorem prezentowanych osiągnięć. Udział Doktoranta w powstaniu prac obejmował bowiem przeprowadzenie syntezy i modyfikacji materiałów, ich pełną charakterystykę z wykorzystaniem technik analitycznych: ICP-OES, adsorpcji i desorpcji azotu, XRD, TEM, UV-vis, XPS, przeprowadzenie testów katalitycznych (utleniania metanolu, tlenku węgla(II), glicerolu), opracowanie wyników, ich interpretację a także przedstawienie wyników w formie pierwszej wersji publikacji. Należy również podkreślić, że Pan Piotr Kamiński jest pierwszym autorem w każdej z prac będących podstawą pracy doktorskiej. Biorąc te wszystkie aspekty pod uwagę stwierdzam, że przedstawiona do recenzji praca spełnia warunek samodzielności naukowej jakie należy oczekiwać od osób pretendentujących do stopnia naukowego. Z lektury publikacji wynika, że Doktorant wykonał ogromną prace doświadczalną tak w aspekcie syntezy materiałów jak i ich późniejszej, niemal detalicznej charakterystyki.

Uwagi dyskusyjne

Jak wcześniej wspomniałam podstawę pracy stanowi cykl prac, które zostały już opublikowane, a zatem poddane procedurze oceny przez specjalistów. Oznacza to, że polemika na temat treści zawartych w publikacjach jest polemiką nie tylko z Doktorantem ale i z recenzentami. Niemniej z obowiązku recenzenta, jak i z ciekawości, wymienię kilka uwag. Bardzo ciekawa jestem opinii/komentarza Doktoranta w odniesieniu do wymienionych niżej kwestii.

(1) Jak wygląda stabilność najbardziej aktywnych katalizatorów w reakcji utleniania metanolu? Czy parametry wysokiej aktywności a przede wszystkim selektwności utrzymują się na tym samym poziomie np. po 10-20 godzinach reakcji? Jak na parametry katalityczne wpływa obecność pary wodnej?

(2) Czy oddziaływanie synergetyczne pomiędzy atomami/kationami złota i miedzi będzie wpływać na położenie pasm zaadsorbowanego tlenku węgla? Jeśli tak, to jak mogłaby wyglądać reinterpretacja wyników sorpcji CO?
(3) Czy prezentowane pasma zaadsorbowanych cząsteczek sond CO i NO są pasmami o największej intensywności? Przykładowo, w żadnym z prezentowanych widm nie są obecne pasma gazowego tlenku węgla(II), co może świadczyć o niecałkowitym wysyceniu centrów redoksowych. Centra najsłabiej wiążące cząsteczkę CO, a być może niereprezentowane w widmie, mogą posiadać znaczący wkład w aktywność katalityczną.

Wnioski końcowe

Praca doktorska Pana Piotra Kamińskiego dotyczy aktualnych i ważnych zagadnień tak w kwestii chemii środowiska jak i wielkotonażowych procesów przemysłowych. Praca nie budzi żadnych zastrzeżeń po względem formalnym i merytorycznym oraz wnosi wiele elementów nowości naukowej tak w odniesieniu do części badawczej jak i interpretacyjnej. Analiza wyników oraz ich dyskusja wskazuje na dojrzałość naukową Doktoranta.

Stwierdzam, że rozprawa doktorska Pana mgr Piotra Kamińskiego zgodnie z art. 13 ustawy z dnia 14 marca 2003 roku o stopniach i tytułach naukowych i tytułach w zakresie sztuki wraz z późniejszymi zmianami w pełni spełnia wymogi określone przez wyżej wymienione przepisy prawa. Stosownie do powyższego, wniosku o dopuszczenie Pana mgr Piotra Kamińskiego do dalszych etapów przewodu doktorskiego.

Z uwagi na wysoką zawartość merytoryczną recenzowanej pracy, duże znaczenie otrzymanych wyników i wysoki dorobek publikacyjny potwierdzony wysokim sumarycznym współczynnikiem oddziaływania IF = 18,249 wnoszę do Wysokiej Rady Wydziału Chemii UAM w Poznaniu o jej wyróżnienie.

Kraków, dnia 29 kwietnia 2016 roku

K. Góra-Marek